Averaging kernel prediction from atmospheric and surface state parameters based on multiple regression for nadir-viewing satellite measurements of carbon monoxide and ozone
نویسندگان
چکیده
A current obstacle to the observation system simulation experiments (OSSEs) used to quantify the potential performance of future atmospheric composition remote sensing systems is a computationally efficient method to define the scene-dependent vertical sensitivity of measurements as expressed by the retrieval averaging kernels (AKs). We present a method for the efficient prediction of AKs for multispectral retrievals of carbon monoxide (CO) and ozone (O3) based on actual retrievals from MOPITT (Measurements Of Pollution In The Troposphere) on the Earth Observing System (EOS)-Terra satellite and TES (Tropospheric Emission Spectrometer) and OMI (Ozone Monitoring Instrument) on EOS-Aura, respectively. This employs a multiple regression approach for deriving scene-dependent AKs using predictors based on state parameters such as the thermal contrast between the surface and lower atmospheric layers, trace gas volume mixing ratios (VMRs), solar zenith angle, water vapor amount, etc. We first compute the singular value decomposition (SVD) for individual cloud-free AKs and retain the first three ranked singular vectors in order to fit the most significant orthogonal components of the AK in the subsequent multiple regression on a training set of retrieval cases. The resulting fit coefficients are applied to the predictors from a different test set of test retrievals cased to reconstruct predicted AKs, which can then be evaluated against the true retrieval AKs from the test set. By comparing the VMR profile adjustment resulting from the use of the predicted vs. true AKs, we quantify the CO and O3 VMR profile errors associated with the use of the predicted AKs compared to the true AKs that might be obtained from a computationally expensive full retrieval calculation as part of an OSSE. Similarly, we estimate the errors in CO and O3 VMRs from using a single regional average AK to represent all retrievals, which has been a common approximation in chemical OSSEs performed to date. For both CO and O3 in the lower troposphere, we find a significant reduction in error when using the predicted AKs as compared to a single average AK. This study examined data from the continental United States (CONUS) for 2006, but the approach could be applied to other regions and times.
منابع مشابه
Nadir measurements from ACE of column amounts of atmospheric gases
The feasibility of using nadir observations to make column measurements of several stratospheric gases will be evaluated for the Atmospheric Chemistry Experiment (ACE) Fourier-transform spectrometer (FTS), which is scheduled for launch in 2002 on the SCISAT-1 platform. The measurement technique is based on using FTIR spectroscopy to measure the atmospheric absorption of cold gases below the sat...
متن کاملComparison of carbon monoxide measurements by TES and MOPITT: Influence of a priori data and instrument characteristics on nadir atmospheric species retrievals
[1] Comparisons of tropospheric carbon monoxide (CO) volume mixing ratio profiles and total columns are presented from nadir-viewing measurements made by the Tropospheric Emission Spectrometer (TES) on the NASA Aura satellite and by the Measurements of Pollution in the Troposphere (MOPITT) instrument on the NASA Terra satellite. In this paper, we first explore the factors that relate the retrie...
متن کاملپیشبینی بیشینه دمای هوای استان خوزستان بر اساس دادههای ماهواره نوا و مدل شبکه عصبی مصنوعی
Air temperature prediction models using satellite data are based on two variables of land surface temperature and vegetation cover index. These variables are obtained by atmospheric corrections in the values for the above data. Water vapor, ozone, and atmospheric aerosol optical depth are required for the atmospheric correction of visible bands. However, no measurements are available for thes...
متن کاملپیشبینی بیشینه دمای هوای استان خوزستان بر اساس دادههای ماهواره نوا و مدل شبکه عصبی مصنوعی
Air temperature prediction models using satellite data are based on two variables of land surface temperature and vegetation cover index. These variables are obtained by atmospheric corrections in the values for the above data. Water vapor, ozone, and atmospheric aerosol optical depth are required for the atmospheric correction of visible bands. However, no measurements are available for thes...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013